
CS352 Lecture - Database System Architectures

Last revised January 11, 2019
Objectives:

1. To discuss possible architectures for a DBMS - centralized, client-server,
distributed

2. To introduce speedup and scaleup
3. To discuss types of parallelism: batch, transaction
4. To introduce cloud computing

I. Introduction

A. Most large databases require support for accessing the database by multiple
users, often at multiple physical locations (sites). There are a variety of
overall system architectures that can be used to accomplish this.

B. Historically, early database systems were based on a CENTRALIZED
MODEL, in which the database resides on a single computer system that
allows access by remote terminals, with all of the computation being done
on the central compuer. This is still the model used by some systems today.

1. Basic characteristics:

a. All data resides on a single computer system.

b. All computations using the data are performed by this system.

c. Some such systems are single-user systems running on a PC.

d. It is also possible to offer access to multiple users via can personal
computers or workstations running terminal emulation software.  
 
Example: Gordon's old administrative computer system used this
model when it was first installed in 1979. The administrative database
resided on a single computer system (originally a PDP-11/70, then a
VAX-11/780, then a cluster of three Alphas). Campus offices

�1

accessed this database via DEC VTxxx terminals or PC's running
terminal emulation software, or later via web-based applications
accessing the database through a web server running on the same
system.

2. The chief advantage of this approach is simplicity - for installing and
maintaining software, performing backups, and managing issues such as
concurrency and recovery.

3. However, the centralized model has a number of disadvantages:  

a. Typically centralized storage and manipulation of data goes hand-in-
hand with centralized CONTROL of data - users have limited
autonomy.

b. A centralized system is totally vulnerable to failure of the centralized
site. Thus, for example, a power failure at the site where the computer
is located can shut down all access to the database, even at remote
sites unaffected by the failure.

c. As the volume of transactions handled by the system grows, it can
become increasingly difficult for a single system to handle the
demand.  

C. These problems - especially the latter - have motivated the development of
alternative system architectures which move away from reliance on a single
computer to perform all processing.

1. The Client-Server Model

2. Use of Parallel Processing

3. Distributed Databases

�2

II. The Client-Server Model

A. The centralized model originated prior to the development of the
microprocessor, which made PC's possible. With the replacement of dumb
terminals by powerful and inexpensive PC's, it becomes possible to shift
some of the burden of computation from the computer system storing the
database to the individual computers serving individual users. This led to
the development of the client-server model.

B. A typical client-server application can be thought of as a system comprised
of multiple layers.

1. A two layer system - a "front end" that manages interaction with the user,
and a "back end" that manages the database.  
 
Example: this is actually the way you are accessing the database for the
homework.

2. A three layer architecture:

a. The user interface layer (typically a GUI).

b. The business layer (performs the actual processing specific to the
application).

c. The database layer.  
 

Example: Gordon 360 (and perhaps my.gordon - unsure) is structured
this way. Gordon 360 runs as a business layer, accessing data from
the Jenzabar database running on a database server.

C. Actually, there are a couple of ways to structure the database layer.

1. One model is called the TRANSACTION SERVER model - the database
server executes database transactions on behalf of the client, but need not
incorporate any awareness of what purpose the transactions are actually
serving as far as the user's application is concerned.

�3

a. As noted in the text, when SQL is used as the medium of
communication between the client and the server, it becomes very
possible for the client and server software to be produced by two
different vendors - and, indeed, for one server to service applications
written using many different software packages, and, as well, for one
client to access different servers running different DBMS's.

b. This shifts the load of application-specific computation from the
server to the business layer, while still leaving the database server
responsible for all query-processing related computation (query
parsing, strategy selection, performing joins, etc.) In particular, no
application-specific code need reside on the database server (unless
stored procedures are used, as might be done to support embedded
SQL), and no database-specific code needs to reside on the client.  
 

Example: this is the model used by my.gordon and Gordon 360. All
applications access the database directly SQL.

2. It is also possible to use a DATA SERVER model, in which the server
delivers physical database pages to the application layer, which then
performs computation using them. This shifts some of the database layer
load from the database server to the application layer - but, of course,
requires that the application software know more about the structure of
the database, and incorporate some of the software typically considered
part of the DBMS.

D. In none of the client-server variants we have considered do we do away with
a central system containing the database - we simply reduce the amount of
computation for which it is responsible. Further, all disk accesses needed
are performed on the server's disk(s) that hold the database.

E. When the phrase "CLIENT-SERVER" is used without further qualification,
it typically refers to to the Transaction Server model, with SQL providing
the interface between the two layers, often through the use of ODBC or
JDBC.

�4

F. In addition to removing some of the computational load from the central
system, the client-server model has a number of other advantages:

1. The possibility of much more sophisticated user interfaces, with a GUI
being run on the client or using a web browser.

2. The possibility of integrating database access with other, non-database
applications on the client - e.g. doing analysis of data obtained from a
database using a spreadsheet, or incorporating it into a document using a
word processor.

3. The ability to develop needed applications quickly, without having to
rely on the programming staff associated with the central database, and
using a variety of development environments, possibly from a vendor
other than the supplier of the database.

III.Use of Parallel Processing

A. The client-server model was motivated in part by a desire to shift some of
the processing load from the central server to the local client systems, thus
reducing the requirements placed on the central system. Ironically, it may
have had the opposite effect - the client-server model expedites the
development of more database applications, and may actually increase the
burden on an organization's server system(s)!

B. In order to keep up with the demand for database accesses, server systems
must often be able to handle a growing volume of database transactions -
growing because or organizational growth and/or an increased number of
applications using the database. One way to address this is with faster and
faster hardware, or course - but at any given point in time there are
technological limits as to how fast a single system can be. Two components
of the server, in particular, can become performance bottlenecks:

1. The server's CPU.

2. The server's disk(s).

�5

C. An alternative to acquiring ever faster hardware is to make use of
PARALLELISM - with a server containing two or more CPU's that share the
workload between them, possibly with multiple disks that can also be
accessed in parallel. This is discussed at some length in chapter 18 of the
book - one we will not have time to cover. (But you can certainly read it on
your own if you wish!)

1. Parallelism may be used in server systems under the client-server model.

2. Parallelism may also be used in the centralized model - the central
system becomes a cluster of CPU's made to look to the user as if they
were a single system.  
 
Example: Gordon's administrative database eventually was run on a
cluster consisting of three DEC Alpha processors and multiple disks.

D. One important observation about parallelism is to recognize that there are a
multiple reasons for using a parallel system. A given system's success must
be measured against the goals that led to its installation.

1. One possible goal is SPEEDUP - to make the processing of individual
transactions (of the same size) faster. This would, of course, require the
use of two or more CPU's to cooperate in the performing of a single
transaction.

2. Another possible goal is SCALEUP - to make it possible to handle a
greater volume of work in the same amount of time. This, in turn has two
sub-categories:

a. BATCH SCALEUP involves increasing the SIZE of individual
transactions, as would occur if transactions become more complex
and/or if the size of a database grew, so that operations such as select
and join require scanning more tuples. This, again, entails having two
or more CPU's cooperate in the performing of a single transaction.

�6

b. TRANSACTION SCALEUP involves increasing the VOLUME of
transactions, as would occur if the number of users accessing the
database were to grow. This can be achieved by still having each
transaction handled by a single CPU, but by using multiple CPU's to
increase the number of transactions that can be processed during a
given period of time.

c. Of course, both reasons might apply in a given situation  

3. For a variety of reasons (discussed in the text), efficiently dividing the
work of a single transaction among two or more CPU's is relatively
difficult. Thus, the easiest kind of performance improvement to attain is
transaction scaleup - which, fortunately, is the kind of scaleup most often
needed. However, there are also applications which require batch scaleup
- e.g. decision-support systems that require analyzing large quantities of
transactional data. (e.g. what happens on an ecommerce site such as
Amazon with recommendations like "you might also like ..." or "others
who looked at this item also looked at ...". Speedup is usually less of an
issue.

E. Because of interaction/interference between the CPU's accessing the same
database, there are practical limits as to how many CPU's can be used before
the gain created by increased computational power is offset by the losses due
to the systems "getting in each other's way".

F. We must also consider ways to parallelize access to the database itself on
disk. In the extreme case, if the entire database resides on a single disk, then
disk accesses are necessarily sequential, which severly limits parallelism
between transactions, but an approach such as RAID can be used to allow
parallelism of access to different parts of the database or even to the same
part of the database if it is replicated.

�7

IV.Distributed Databases

A. If we take the idea of parallelism further, we move in the direction of a
DISTRIBUTED SYSTEM.

1. In the parallelism model we have discussed thus far, the overall system
still resembles a centralized system in the sense that the database and the
CPU's accessing it still reside at a single physical site.

2. In a distributed system, the database is spread over a number of physical
sites, each of which houses a all or portion of the database - with all or
portions possibly replicated at multiple sites. (Often, especially in the
latter case, this distribution mirrors the organizational structure of the
database's owner.)

3. This may also address he issue of vulnerability to failure of a single site
if the distribution model is such that all of the information in the database
is available at multiple sites.

B. Distributed systems are characterized by a much looser coupling between
systems, which facilitates increased gains through parallelism.

C. We discuss this as the next major topic.

V. Cloud Computing

A. Historically, an organization relying on a database system has owned it's
own hardware - whether this be centralized, a server, or distributed.

B. A recent development has been the use of cloud computing, in which a
database server residing "in the cloud" - i.e. on a service purchased by a
vendor. In this case, the using is does not maintain its own DBMS, but
rather uses a database server provided and maintained by a vendor.

�8

